What is Computational Text Analysis?

Computational Text Analysis for Social Science: Model Assumptions and Complexity

Brendan O'Connor* David Bamman† Noah A. Smith†*
*Machine Learning Department

Adapting computational text analysis to social science (and vice versa)

Paul DiMaggio

Abstract
Social scientists and computer scientist are divided by small differences in perspective and disciplinary divide. In the field of text analysis, several such differences are noted: social scientists models to explore corpora, whereas many computer scientists employ supervised models to try hold to more conventional causal notions than do most computer scientists, and often favor existing algorithms, whereas computer scientists focus more on developing new models; and corpus human judgment more than social scientists do. These differences have implications that pot practice of social science.

Keywords
Topic models, text analysis, unsupervised models, interpretation, sentiment analysis, supervised

Text as Data: The Promise and Pitfalls of Automatic Content Analysis Methods for Political Texts

Justin Grimmer
Department of Political Science, Stanford University, Encina Hall West 616 Serra Street, Stanford, CA 94305
e-mail: jgrimmer@stanford.edu (corresponding author)

Brandon M. Stewart
Department of Government and Institute for Quantitative Social Science, Harvard University, 1737 Cambridge Street, Cambridge, MA 02138
e-mail: bstewart@fas.harvard.edu

Edited by R. Michael Alvarez

Politics and political conflict often occur in the written and spoken word. Scholars have long recognized this, but the massive costs of analyzing even moderately sized collections of texts have hindered their use in political science research. Here lies the promise of automated text analysis: it substantially reduces the costs of analyzing large collections of text. We provide a guide to this exciting new area of research and show how, in many instances, the methods have already obtained part of their promise. But there are pitfalls to using automated methods—they are no substitute for careful thought and close reading and require extensive and problem-specific validation. We survey a wide range of new methods, provide guidance on how to validate the output of the models, and clarify misconceptions and errors in the literature. To conclude, we argue that for automated text methods to become a standard tool for political scientists, methodsologists must contribute new methods and new methods of validation.
What is Data Science?

- “Data science is the study of extracting value from data” – Jeannette Wing
What is Data Science?

“Data science is the study of extracting **value** from data” – Jeannette Wing

Value

- Requires domain expertise to determine what value is
- **Value from data** is different based on the domain and the needs
What is Data Science?

“Data science is the study of extracting value from data” – Jeannette Wing

Extracting

• emphasizes action on data
• mining information
What is Computational Text Analysis?

“Data science is the study of extracting value from data” – Jeannette Wing

Copyright © 2016 Barnard College
Computational text analysis is not a replacement for but rather an addition to the approaches one can take to analyze social and cultural phenomena using textual data. By moving back and forth between large-scale computational analyses and small-scale qualitative analyses, we can combine their strengths so that we can identify large-scale and long-term trends, but also tell individual stories.

Computational text analysis is not a replacement for but rather an addition to the approaches one can take to analyze social and cultural phenomena using textual data. By moving back and forth between large-scale computational analyses and small-scale qualitative analyses, we can combine their strengths so that we can identify large-scale and long-term trends, but also tell individual stories.

What can we do with computational text analysis?
What can we do with large scale textual analysis?

- Sort artists by their vocabulary

of Unique Words Used Within Artist’s First 35,000 Lyrics

What can we do with large scale textual analysis?

- Identify flow of topics in birthing narratives

What can we do with large scale textual analysis?

- Categorize the level of presidential candidates’ speeches

![Vocabulary and Grammatical Comparison](https://arxiv.org/pdf/1603.05739.pdf)
What can we do with large scale textual analysis?

- Who wrote the anonymous Federalist Papers?

https://www.jstor.org/stable/2283270
What can we do with large scale textual analysis?

A Lot!
Computational Text Analysis in this course

- Aggregate large scale textual data
- Text Processing
- Discovering patterns in data
Learn the tools and gain the confidence to independently:

1. Aggregate large scale textual data
2. Text processing
3. Discovering patterns in data
Course Outline

- **Python Overview**
 - Introduction to Python
 - Pandas

- **Lexical based analysis methods**
 - Text Processing
 - Word & Document Representation
 - Topic Modeling

- **Data Collection**
 - Web Scraping
 - APIs

Week 1

Week 2 - 3

Week 4
Course Outline

- **Machine Learning** Week 5
 - Regression & Classification
 - Clustering

- **Advanced Topics & Final Projects** Week 6
Communication

- **Course webpage:**
 - https://coms2710.barnard.edu/

- **Slack:**
 - https://bc-coms-2710-summera.slack.com/

- **Zoom link:**
 - Same for lectures and office hours

- **Gradescope:**
 - Submitting assignments
announcements
final-project
find-a-partner
homeworks
in-person-offices
jupyterhub
office-hours
random
tutorials

> Add channels
Slack - Announcements

- course staff post course wide announcements
- Do not post here
- Encouraged to reply to posts that we create there
Use this channel to find partners

Different parts of course can be completed in pairs
- Ask questions when working on homework, labs, and projects
- **Do not** post solutions
Changes to Office Hours will be posted here

Ask questions about Office Hours posted here

Fill out poll for times
Potential in-person office hours
Course Meetings: 10:45am – 12:25pm (EST) MTWR

- Live classes
 - Primarily lectures
 - Q/A
 - Recorded
 - Discussions and exercises about course material

- Readings:
 - Readings associated with the lecture’s material
 - Distributed on course schedule
Special dates

- No lectures: May 17th, 18th, May 31st

- Guest Speakers:
 - Maria Antoniak:
 - PhD student @ Cornell – June 1st
 - Lucy Li
 - PhD student @ Berkeley – June 9th

Copyright © 2016 Barnard College – Adam Poliak
Assignments

- Daily-ish exercises/tutorials
- Reading reflections
- 4 ~week long homeworks
- Final Project
Daily-ish Tutorials

- **Due M/T/W/R midnight**
- Complete individually
- ~1.5 hours long
- 2 or 3 a week

Saturday night @ midnight
Reading reflections

- Due Sunday midnight

- For each reading:
 - 3-4 sentence summary
 - 1 sentence about something in particular that you like
 - 1 sentence about something you didn’t like or something you found confusing and you’d like me to explain
 - 1 question for future work

- Goal: Examples of computational text analysis
 - Preparation for final projects

- Complete individually
4 Homeworks

- Based on the previous week’s material

- JupyterNotebook containing a mix of programming and written analysis

- Goal: gain comfort and confidence in textual analysis

- Can work in pairs
4 Homeworks

- Readability of Inaugural Addresses
 - Due Monday 05/10 – available online

- Exploring NYTimes Obituaries

- Scraping and finding biases in CULPA reviews

- Machine Learning
Final Project

- Develop Research Question
- Collect Textual Data to Answer Question
- Data Exploration & Analysis
- Machine Learning
 - Prediction or clustering
Final Project – Deliverables

- Project ideation – Friday May 21st
- Project proposal – Friday June 4th
- Project presentations – Monday June 14th
- Project submissions – Friday June 18th

http://coms2710.barnard.edu/final_project
Grading

<table>
<thead>
<tr>
<th>Participation</th>
<th>5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Homeworks</td>
<td>30%</td>
</tr>
<tr>
<td>Reading reflections</td>
<td>15%</td>
</tr>
<tr>
<td>Daily Tutorials</td>
<td>20%</td>
</tr>
<tr>
<td>Final Project</td>
<td>35%</td>
</tr>
</tbody>
</table>
Participation Grade

- During class meetings:
 - Topic discussion
 - Asking questions

- Asynchronous
 - Active on Slack (questions & answering)
 - Watching lectures
Assignment Logistics

- **Distribution:**
 - **Instructions:**
 - https://coms2710.barnard.edu/schedule.html
 - **Materials:**
 - Columbia JupyterServer

- **Gradescope (for submission)**
Year

- **Graduate**: 8.7%
- **First-year**: 17.4%
- **Junior**: 21.7%
- **Sophomore**: 21.7%
- **Senior**: 30.4%
Majors

- Philosophy: 4.3%
- Math: 8.7%
- Political Science: 8.7%
- Social Work: 4.3%
- Psychology: 4.3%
- Undeclared: 13.0%
- Linguistics: 4.3%
- Economics: 8.7%
- Environmental Science: 4.3%
- English: 13.0%
- CS: 26.1%
Course staff

Adam Poliak (apoliak@barnard.edu)

- PhD in Computer Science from Johns Hopkins University
- First year at Barnard
- Research:
 - Natural Language Processing
 - Data Science applied to text data
Gauri Narayan
gn2271@barnard.edu

- BA Computer Science, Barnard ‘20
- Master’s Computer Science, Columbia
- TA-ed 2 previous NLP classes
- 2 hours of office hours a week
Course staff - Preceptor

Susu Rawwagah

Barnard Political Science ’21
Our job is to help you succeed!
Office Hours

- Roughly 6 hours a week
- Times based on your interests
 - Complete poll found in Slack
- Possibly additional by appointment
Collaboration

- Encouraged to discuss problems
- Do not share solutions
Learn By Doing