Announcements – Assignments

- Homework 01
 - Due tonight

- Readings:
 - Reading 02 – link course site, due Sunday

- Week 2 Tutorials:
 - 2.1 – Tokenization, lemmatization, stopwords, etc
 - Based on yesterday’s lecture
 - 2.2 – Exploring dictionary-based methods
 - Based on Wednesday’s and Thursday’s lecture
Yesterday

- Tokenization
- Lemmatization
- Stemming
- Stopwords
- Part of Speech
- Dependency Parsing
- Named Entities
Zipf's law
Documents & Corpora
Corpus:

- A collection of documents
- Corpora – plural of corpus
Document:
- Unit of text of interest
- Often represents one data point

Examples:
- Book
- Chapter
- News article
- Tweet
- Product Review
- ….
How do we represent documents?
Dictionaries of word counts

Often called **Bag of Words**
Very good drama although it appeared to have a few blank areas leaving the viewers to fill in the action for themselves. I can imagine life being this way for someone who can neither read nor write. This film simply smacked of the real world: the wife who is suddenly the sole supporter, the live-in relatives and their quarrels, the troubled child who gets knocked up and then, typically, drops out of school, a jackass husband who takes the nest egg and buys beer with it. 2 thumbs up... very very very good movie.
Very good drama although it appeared to have a few blank areas leaving the viewers to fill in the action for themselves. I can imagine life being this way for someone who can neither read nor write. This film simply smacked of the real world: the wife who is suddenly the sole supporter, the live-in relatives and their quarrels, the troubled child who gets knocked up and then, typically, drops out of school, a jackass husband who takes the nest egg and buys beer with it. 2 thumbs up... very very very good movie.
Very good drama although it appeared to have a few blank areas leaving the viewers to fill in the action for themselves. I can imagine life being this way for someone who can neither read nor write. This film simply smacked of the real world: the wife who is suddenly the sole supporter, the live-in relatives and their quarrels, the troubled child who gets knocked up and then, typically, drops out of school, a jackass husband who takes the nest egg and buys beer with it. 2 thumbs up... very very very good movie.

('the', 8),
(',', 5),
('very', 4),
('!', 4),
('who', 4),
('and', 3),
('good', 2),
('it', 2),
('to', 2),
('a', 2),
('for', 2),
('can', 2),
('this', 2),
('of', 2),
('drama', 1),
('although', 1),
('appeared', 1),
('have', 1),
('few', 1),
('blank', 1)
.....
Very good drama although it appeared to have a few blank areas leaving the viewers to fill in the action for themselves. I can imagine life being this way for someone who can neither read nor write. This film simply smacked of the real world: the wife who is suddenly the sole supporter, the live-in relatives and their quarrels, the troubled child who gets knocked up and then, typically, drops out of school, a jackass husband who takes the nest egg and buys beer with it. 2 thumbs up... very very very good movie.
Document vectors
Document vectors

- Vector is just an array of numbers

- Index represents a word
- Value represents ….
Document vectors

- Vector is just an array of numbers
- Index represents a word
- Value represents something about that word
 - For now word count
Document Matrix

Slide taken from Dirk Hovy
Term Frequency (tf):

tf of word *w* in document *d*:

\[\frac{|w|}{|Document|} \]

number of times *w* *appears in* \(D\) *divided by of number tokens in* \(D\)
Problem with Term Frequency

Boring Stuff

Told Ya So...

Just Right???

Obscure Stuff

Copyright © 2016 Barnard College

Slide from Dirk Hovy
Some words are more interesting than others.
Inverse Document Frequency (idf)

idf of word w in document D:

$$\log \frac{|D|}{|\text{tf}(w,d) \neq 0|}$$

number of documents divided by number of documents that contain w
TF-IDF
TF-IDF of word w in document D:

Term Frequency \times Inverse Document Frequency

Captures terms that are frequent in a document and specific to the document in the corpus
Inverse Document Frequency (idf)

idf of word \(w \) in document \(D \):

\[
\log \frac{|D|}{|tf(w,d) \neq 0|}
\]

number of documents divided by number of documents that contain \(w \)